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Abstract. An m x m symmetric nonnegative definite matrix X has Cholesky factorization T =
UTU. By carrying out the factorization in a particular way for positive definite T, the Schur
complements of all the leading principal submatrices of T are produced, as well as their Cholesky
factors. It is8 shown how the same can be done for generalized Schur complements when ¥ is
singular. When X is the population covariance matrix of a multivariate random distribution, partial
covariances and correlations can be defined in terms of the elements of such Schur complements.
It follows that these can be produced efficiently and reliably from the Cholesky factorization.

When n x m A is given and £ = AT A, the Cholesky factor U may be found directly from the
QR factorization A = Q U, QTQ, = I, and this is preferable in many numerical computations.
This QR factorization, or the modified Gram-Schmidt orthogonalization, produces projections of
later columns of A onto spaces orthogonal to earlier columns. It is shown how the cosines of
the angles between such projected vectors can be found using the elements of U. These cosines
produced from A turn out to be the previously mentioned partial correlation coefficients produced
from T, when £ = ATA. When A is obtained from observations of random variables, these are
the sample correlation coefficients. It is shown how such correlation coefficients can be efficiently
obtained when observations are added or deleted. This corresponds to altering all of A in a certain
simple way, and adding or deleting rows.
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Notation

We will be dealing with vectors and matrices in their own right, as well as treating them
as statistical objects. Because of the very different notation used in econometrics, statistics, and
other areas which use matrix theory, we will use a standard notation of matrix theory and describe

the convention we use within this for representing statistical objects. We describe these fully for
possibly different audiences.

Matriz Theory Notation. Upper case greek and italic letters, like £ and A, will denote matrices;
lower case italics, like a; and z, will denote vectors; except that 1, 7, k, m, n, p, ¢, r, s, t will
represent integers or indices. Lower case greek letters will denote other scalars. Thus,

Alnxm)=(a1 ... am)=(aj)

represents an n X m matrix A with columns a,,...,am and elements ay;.

A principal submatriz of T is a square submatrix whose diagonal elements are also diagonal
elements of £. A leading principal submatriz of T is a principal submatrix in the top left corner of
.

We will make frequent use of the following notions: £T denotes the transpose of £; R is the
real n-space and ||z||z = VzTz the two-norm of a vector z. The range or image or column space
of a matrix A is denoted by R(A), and its orthogonal complement by R(A)L. ©(a,b) is the angle
between two vectors a and b of equal dimension.

Statistsical Notation. This will always follow the matrix notation above. We will use the same
notation for a random variable and an instance or observation of that variable. Thus z can represent
a random vector or an observation of this random vector, the meaning will be clear from the context.
E(z) denotes the ezpected value, and z ~ (a, L) denotes a vector z of random variables with mean a
and variance-covariance matrix {covariance for short) Z.

1. Introduction
For a given matrix

2=(g ;) (1.1)

with ponsingular E, the Schur complement of E in I, often written (£/E), is
= (Z/E)=H - GE™'F. (1.2)

There is an extensive literature on this, and it is a theoretical tool widely used by statisticians as
can be seen from the bibliography prepared by Ouellette [12], see also |2, 3]. Perhaps the most
common use by statisticians of the Schur complement occurs when T is a symmetric positive definite
covariance matrix, and the Schur complement of a principal submatrix is required. In this case
there is a simple relation between Schur complements and Cholesky factors. Suppose we partition
the matrices

Todes

Zn Eu) T (UT 0 ) (Uu Un)
Y= =U'U = , 1.3
( £n En v vz )0 un (13)
where U is the upper triangular Cholesky factor of T. It follows that
=(Z/Zu) =T - Enip'y \
= URHUs + UQUr - UL ULW(UL UL) U Ura (1.4)
= UgyUn, L ey
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. ::_. so that the Cholesky factor of a symmetric positive definite £ not only provides the Cholesky
] :.,-: factors of all the leading principal submatrices £;; = UITIUu of I, but also the Cholesky factors
-'y- of the Schur complements of all the leading principal submatrices (£/Z;;) = ULU,;; in . By
S permuting rows, and permuting columns in the same way, any principal submatrix can be made a
:0;. v leading principal submatrix, and the above well known result suggests we might be able to use the
i’ ' . Cholesky factor and ignore the Schur complement. This is not quite true, as we now point out.
h o When ¥ is the covariance matrix of a multivariate distribution, the population partial correla-
Ik tion coefficients are defined in terms of the elements of Schur complements of principal submatrices
W of I, see [1] pp. 37,41, so these Schur complements are really needed. In §2 we show that if
) the Cholesky factorization is carried out in a particular order, then the Schur complements of all
:,\ g leading principal submatrices occur naturally as part of the factorization; that is, without having
"\}’ :}j'_ to form U{. Us,.
:,) When E is singular or not square in (1.1) Marsaglia and Styan [11] define a generalized Schur
o _‘: complement
’ S=(X/E)=H-GE"F, EEE=EFE. (1.5)
K :-‘ When T is symmetric nonnegative definite and possibly singular, this generalized Schur complement
*-rf: is unique and symmetric nonnegative definite, and we show in §2 how it, and its Cholesky factor,
"\t:‘._' occur naturally as part of a particular Cholesky factorization of £. In fact the form and the
o factorization is as simple as that for the positive definite case. When it is also realized that such
algorithms for producing Cholesky factors are very efficient, and are numerically reliable when =
s is positive definite (see for example [8], p. 89), and can nearly always be made reliable when ¥ is
X singular, see (9], and that results involving (generalized) Schur complements of principal submatrices
'_.:: are easily derived using Cholesky factors, the argument for thinking largely in terms of Cholesky
L factors becomes quite strong, especially for those interested in computations.
A In §3 we discuss correlation coefficients, partial correlation coefficients, and conditional cor-
. relation coefficients, and give an efficient and reliable way of obtaining these during the Cholesky
'-)- factorization of the given covariauce matrix . Readers not interested in such statistical objects
\;;' need only note that the aim is to obtain the coefficients pg'k) in (3.5), and this is done from the
P ;2 elements af-'k) of =9 = UL Usz in (1.4).
Re The angle ©(a,b) between two nonzero vectors a, b € R" is defined by
J
0 b
D4 == 7
; r-_: CO!e(a, b) "allzllbllz’ 0< e(d, b) <, (16)
W and §4 relates this to some orthogonal transformations.
® It is possible that A is available where the covariance matrix is T = AT A, and §5 contains
IR the main theorem (Theorem 5.1) which relates the Cholesky factorization and generalized Schur
.{l."t, complements of T in §2, and the covariance matrices and partial correlation coefficients of §3, with
:.::: the angles between vectors arising in the QR factorization of A in §5; the initial work on this was
Ry reported in [5]. We now expand on this.
Ao We know that it is not generally advisable to form AT A numerically if we have A available,
D, and that the Cholesky factor U of £ = ATA = UTU can more reliably be obtained as the upper
.-::’:" triangular matrix U in the QR factorization of A (see for example [8], Chapter 6)
:: v
:.: > : TA — U T _ ATH I 1.7
;::.l Q - 0 ’ QQ "Q Q— ) ()
oS A=QU, Q=(Q1 Q).
%
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j The question now arises as to whether the Schur complements of ¥, or their factors, and the
e corresponding partial correlation coefficients, can be obtained directly from the QR factorization
" of A. Section 5 answers this by considering how algorithms for the QR factorization of A suc-
cessively produce the orthogonal projection of a; onto the space orthogonal to a1, R((a; a2)),

) .., R((a1 ... aj-1)), for each 2 < j < m. The scalar p (the partial correlation of £, and

"" : &k keeping £1,...,& - fixed), s < j,k < m, is shown to be the cosine of the angle between the
ey projections of a; and a; onto R((a1 ... a;—1))*. It is shown how such correlations can be found

oo from the QR factorization of A without forming ATA or UTU. The Cholesky factors of the Schur
ey complements of leading principal submatrices of £ = AT A can also be produced directly.

' In §6 we consider the special case of having observations of random variables, and estimating
:' , sample partial correlation coefficients from these. Thus, when z;, 3 € R™ are vectors of n obser-
" vations on two possibly related random variables £;, and {3, and their means are subtracted to
OO give

pu: o=z —e(zTe)/n, =12, e=(1 ... 1)T, (1.8)

then p12 = cos©(a;,az) is called the sample correlation coefficient between §; and §2. For n

~ observations on each of m such random variables ;,...,&x,, the means can be subtracted to give

:' A=(a; ... am),andif

A t‘ 11 cee Olm

‘ =1 : ;| = AT A4, (1.9)

Oml - Omm

;: ; the sample correlation coefficients are

i pij = _1/:”_1/2 when 040j; #0, 1<i,j<m. (1.10)
h 4 : a.l a]]

" The sample partial correlation coefficients are then defined in terms of the elements of the
W Schur complements of principal submatrices of X, in a similar manner to the population partial
:n:. ' correlation coefficients mentioned earlier. Note that (n — 1)~ AT A is usually taken as the estimate
c:|: for the population covariance matrix, but we will be able to ignore the scaling since correlations
:::' are independent of scaling. By an intelligent representation of the data we show that the computed
?'f: results may be updated efficiently for certain changes in the data.

) In §7 we consider the costs of computations, and how sets of partial correlation coefficients
;.,c could be computed. We illustrate the loss of accuracy caused by forming ¥ = AT A in finite
W) % precision when A is given, so that working with A could be important in some cases despite the
! greater efficiency of working with .

X In §8 we try to summarize the various results of the paper and emphasize the relations among
. Ay them.

:;"n 2. Cholesky Factors and Generalized Schur Complements

:::: If £(m x m) is symmetric nonnegative definite it has a Cholesky factorization with upper
f.::: triangular factor U:

5:!‘3 o11 ... Oim “{ B ... Bim

L = : : | =vTy, U=|[: |= o], mezoo (21)
:: Omi1 ... Omm u£ Bmm

;j If ¥ is positive definite this is unique, but if ¥ is singular it need not be. We will make it unique
s, (see for example [10], p. 124) by demanding

%)

{ O0=pii41= +++ =pim if i =0 (2.2)
1:.;
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Clearly the first row u7 of U can be found from (2.1) and (2.2), and if we have found rows u7, ...,
ul_ |, we can find the ith row from £6) in

0 o0
T-vul - ... —yul = (0 2(‘)) , (2.3)
a.(: b a.(:;). His Hii ... Pim
20 = : : = oo : .
0,(':)' . 6,(:.2,. Him .- HBmm HBmm

The particular variant of the Cholesky algorithm we are interested in then has the form, with
a‘(jl) = 0,5, (note that we need only compute the upper triangular part),

Cholesky Algorithm

i=1,...,m = (af:))l/z
0 if uyu =0

0’.(:) /ui otherwise (24)

k=¢+1,....,m uu :={

.. 1 .
J=i+1,...,k ",('.k ):=a§."‘)_“‘.j“‘.k

Here, the u,x can overwrite the a.(:), and the a,(.':l)

can overwrite the ¢../. Thus, the elements of

L=z @ . ™= os,':,‘,). are all formed by the algorithm. This is essentially the basic
structure of algorithm SCHDC in LINPACK, see §8 and Appendix C.99-C.102 in [6].
If we partition T as in (1.3) with (¢ — 1) x ( — 1) £,, then from (2.3)

£0) = yLUs,, (2.5)

(%)
sk

and if £y, is nonsingular, (1.4) shows that () is the Schur complement of £;; in £. If L), is
singular a generalized Schur complement is, see (1.5), (1.1) and (1.3),

S =T33 - TnE5 512 = UQUz + UL Uy - URUL (U Un) " Uf Una, (2.6)
where L7, is any generalized inverse of L), satisfying
ZuZsnZu = Iy = UL UL (UL Un) " UL Uy (2.7)
But our choice (2.2) ensures in (1.3) that
R((Un Uxz))= R(Un), (2.8)

so Uy3 = Uy B); for some B3, and substituting this in (2.6) and using (2.7) shows that (2.5) is the
generalized Schur complement of singular £;; in Z.
Now from (2.8)

R((Zu Z12))=R(U{}(Un Ur)) = R(UJ}Un) = R(Zn),

and this is the necessary and sufficient condition for the generalized Schur complement of Tj;
in symmetric £ to be independent of the choice of generalized inverse L];, see for example [2],
Proposition 1. We can now summarize this result.
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Result 2.1. For any m x m symmetric nonnegative definite matrix £ with elements a§;), the
Cholesky algorithm (2.4) produces £) in (2.3), § = 2,...,m, as the unique (generalized) Schur
complement of the leading principal s — 1 square submatrix in . The algorithm then proceeds to

find the Cholesky factor, see (2.3), of this generalized Schur complement.

This is a simple and clean theoretical result, involving no generalized inverses, just a variant
of the Cholesky factorization. It provides a strong argument for using this Cholesky factor as a
powerful theoretical tool in this area.

3. Covariance Matrices and Correlation Coeflicients |

Ifz=(& ...&m)T is a vector of random variables with z ~ (a,Z), which indicates z has
mean )
Elzl=a=(a1 ... am)T (3.1)

and covarjance
El(z - a)(z — a)T] =T = (0y5), (3.2)

then a good measure of the degree of dependence between §; and ; is their covariance standardized
by their standard deviations. This is called their correlation coefficient

El(& - ai)(§5 — )] _ O

i = = . 3.3
%9 = TEI(E - VBl = )P g1l 53
Thus all the correlation coefficients are obtained directly from the covariance matrix.
If z and T are partitioned conformably
_ (= _ (1 Zn e .
z= (:2), 2—(En 222), Tyis(t-1)x (v -1), (3.4)

and ¥ is nonsingular, then Anderson [1], p. 41 states that the partial covariance of z2 given z;
can be defined as the covariance of the residual of z; from its regression on z;. Anderson (1] §2.5
shows that this is just the Schur complement of Tj; in £, which we have shown is £(*) in (2.5), the
elements of which are the d}',‘) produced in (2.4). The partial correlation coefficients are defined
in terms of the elements of this partial covariance matrix, just as was done in (3.3) for ordinary
correlation coefficients.

Definition 3.1. The partial correlation between &, and &, 5,k =1¢,...,m, given &, ..., & is
defined to be @
1]
() sk () ()
A — — oWl 2, (3.5)
ey
and is a measure of dependence between §; and £y when the effects of £, ..., -1 have been
removed.

The work here has shown that a numerically reliable and efficient way of obtaining these is to
use (3.5) once the aJ(-';) have been obtained directly from the Cholesky factorization (2.4). If z also
has a multivariate normal distribution, so that z ~ (a,Z) completely determines the distribution,
then Anderson [1] §2.5 shows that I() is the conditional covariance of z; given z;, and then we
can call (3.5) a conditional correlation.
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The nonzero condition in (3.5) automatically holds when I is nonsingular, but we have included
it for full generality. If T is singular and ag.) = 0, then it is straightforward to show a,(.';) = a{"’.) =0,
k=14,...,m, and p(',,) is undefined.

Although this 1s not a statistical paper, we will now show that the generalized Schur comple-
ment () is the partial covariance matrix of zz given z), when £;; is singular. We do this to show
\ : the full generality of the results here, and to illustrate how easy it is to prove such results just using
% the Cholesky factorization (2.4) which provides £() and its factors so elegantly.
M)

)

I z ~ (a,%) and the Cholesky factor U of £ = UTU is as in (2.4), then we may remove the
sero rows of U to obtain U of full row rank and such that £ = UTU. It follows from Anderson (1],
pp. 32-33 that with probability 1

Q“' _ T _ a1 ﬁT 0 v _ o
. - (2)-(2)+ (8 &)(2)-re0m o-ton

where U], and U], each have full column rank. If z; is given (such z; must lie in the linear variety

W :_-: a1+ U {101, for some v;, to be consistent) then v, is completely determined, and
L
f-l - 3 .
g z3 = by + U};vg, b =az + Uf;vl given, v ~ (0,I).
B \'
!
- Now using the superscript + to denote the Moore-Penrose generalized inverse,
5! .' -~ —
Vi ' b2 = az + U3(0))* (21 - &)
L
i can be defined as the regression of z; on z; ([1], p.41), so the residual T%vs ~ (0,£)), and the
Wl partial covariance matrix is £(),
b It follows that (3.5) can also be used to define the partial correlation coefficients when Zn
::::.: . is singular, and so the Cholesky factorization (2.4) produces the partial covariance matrices X(*)
:':q. and its factors, see (2.3), and then the partial correlation coefficients are given by (3.5), for any
A . . .
:':::: symmetric nonnegative definite covariance matrix £ = (af} )).
W
L M
,'% 4. Angles Between Vectors, and Orthogonal Transformations
'
NN We now consider some results which at first glance seem unrelated to §§2 and 3. We exhibit
; “_‘.: the connection at the end of §5.
s We have defined the angle ©(a,b) between two nonzero vectors a,b € R™ to satisfy
W
@ aTh
) cos B(a,b) = ——— ), 0 < 8(a,b) <. 4.1
R )= LT @) “y
.'g. "
:‘::?, If either a or b is zero the angle is not defined. We will be interested in orthogonal transformations,
;v:.: and the following obvious result indicates how angles are preserved.
4.4
' Lemma 4.1. For any matrix Q,(n x r) such that QTQy = I, and any nonzero vectors c,d € R’
Wy
0}
A 6(Q1¢,Q1d) = 6(c,d). (4.2)
’.'
]\f.. The next result exhibits a more interesting connection between orthogonal transformations
{} and angles, and provides an alternative to (4.1) for obtaining angles.
i'l'
A
W 6
3 -
. L]
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Theorem 4.1. Let a,b € R" be nonsero vectors, and (a b) = Q.U a QR factorization with

T _(U _ (B 2 .
Q (a b)—(o), U—(o ”22), b1 >0, pz2 >0, (4.3)

and Q = (Q1 Q:2) an n x n orthogonal matrix. Consider the orthogonal rotation through ¢ which
transforms U to lower triangle, with

() (m)=() dwmthesaso g

Then the angle between a and b may be obtained from either
cos 6(a,b) = sin ¢ = p33/Az3, (4.5)
8in 6(a,b) = cos ¢ = p22/A22. (4.6)

TlLe proper of the two solutions for (4.6) is retrieved by having the angle ©(a, b) satisfy sign(§ -
6(a, b)) = sign(u12).

Proof. From Lemma 4.1, (4.1), and (4.4)

B11412 Hi2 .
co88(a,b) = = —= =3sin¢
) pu(pg; + #3,)' 2 Az ’

the last step coming from multiplying (4.4) by the transpose of the rotation, which also gives pj =
A3z cos ¢, showing that cos¢ > 0. But from (4.5) sin ©(a, b) = + cos ¢, whereas the definition (4.1)
ensures sin 6(a, b) > 0 and so (4.6) follows.

To illustrate that this is a result of general computational value, consider floating point com-
putations with precision §, so that if |y| < § the computed result of adding v to 1is i(1 + ) = 1.
With

(a b):(; 'll)’ 1 & computer number, g’ <§

computing (4.1) or (4.5) would give
fi(cos 8(a,b)) =1,
leading us to believe ©(a,b) = 0. The alternative (4.6) would give
A(sin ©(a, b)) = n,

telling us 6(a, ) =~ n, which is far more desirable.

Note, that by following the work of Wilkinson [13] the computations for cos 8(a, b) in (4.1) and
(4.5), and for sin 8(a, b) in (4.6), can be shown to be numerically stable, so if we want the cosine
or sine then these give all the accuracy we can expect. However |cos ©| = 1 is relatively insensitive
to small changes in 8, and if we want © in such cases then we should avoid (4.1) and (4.5). On the
other hand [sin ©[ = 1 is also relatively insensitive to small changes in 4, and (4.6) should not be
used to compute © in such cases. Replacing bby (n 1 )T in the above example will illustrate this.
In summary, if we want to compute 6(a,b) we could use (4.1) or (4.5) when |cos ©(a,b)| < 2-1/2
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and (4.6) otherwise. If the choice is between (4.5) and (4.6) only, this criterion would lead to (4.5)
when |u12| < p22 and (4.6) otherwise.

Note that computing (4.1) takes about 3n flops (for a definition of ‘flop’ see (8], p. 32), while
computing (4.3) takes about 4n flops at best, 8], p. 148.

In the remaining sections we will only discuss the computation of cosines, and so either (41) or
(4.5) will suffice. However, we will present theory related to angles in general, so anyone intending |
to compute these actual angles can use the results of this section.

5. The QR Factorization and Angles Between Projected Vectors

Suppose A(n x m) = (a; ... Gm), which need not have rank m. Here we will partition
A= (A; A;) with Aj(n x1 - 1), and describe how the QR factorization produces projections of
columns of A; onto the space R(A;)*. We will later show that partial correlation coefficients are
the cosines of angles between such projections when £ = AT A.

Suppose Q(n x n) = (Q1 Q32) is an orthogonal matrix such that

A=(A1 4A2)=(Q Qz)(g g), (5.1)

where E(q x 1 —1) is of rank ¢. This could be computed by the first ¢ steps of the QR factorization,
or the first ¢ steps of the modified Gram-Schmidt (MGS) algorithm (see [8], Chapter 6), but we
only require the zero block and the full row rank of E, giving

Al=Q1E, Ay =Q:\F + QG
Let us define the two symmetric idempotent matrices
P=Q:Q{, P=@:Q7.

Since E has full row rank, R(A;) = R(Q1) = R(P,) so P, is the orthogonal projector onto R(A;),
P; = I — P, is the orthogonal projector onto R(A;)*, and

PA3=Q:G=A3 - F (5.2)

is the projection of the columns of A; onto R(A;)t. That is, the columns of Q;G correspond to
the columns of A3 after the dependence on a,, ..., a;—; has been removed, and it is the correlation
between these that is of interest in defining partial correlations. We first consider the angles between
these vectors.

Definition 5.1. Let h; be the projection of a; onto the space orthogonal to ay, ..., a;-1, where
2 A= (a; ... am). We define 6;',) (A) to be the angle between any pair of nonzero such h; and
Y he,7,k=54,...,m.
If we write G = (g; ... gm) we have h; = Q29;, and from Lemma 4.1
611 (4) = ©(Q20;,Qa9x) = ©(9;,94) if lgsllallgullz # 0. (53)

The angle is undefined if either projection is zero. It follows that these angles are just the angles
between columns of G in (5.1).

Lemma 4.1 in §4 described an invariance of angles under certain transformations, and the
following result extends this.
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Lgmma 5.1. For any matrix é;(p x n) such that Q.TQ.l =IL,ifB=(by ... bn)= Q14 then
eﬁ',)(B) is defined if and only if 652(.4) is defined, and in this case

el (B) =08l (G,4)=00)(a), sk=i..,m
Proof.
= = E F
has the same G as the orthogonal factorization in (5.1) so the result follows from (5.3).

Since (5.3) only depends on the full row rank of E and the zero block in (5.1), it is unaffected
by orthogonal transformations applied to the left of (E F), or of G. In particular, orthogonal
transformations of the form (4.3) and (4.4) could be used on G to find the 8;',‘)(.4)

Note that ¢ steps of the QR factorization for computing (5.2) will provide Q2 and G separately,
whereas MGS only provides Q2G when it is stopped after ¢ steps. From (5.3) we see either will
do for computing angles. In (8], Chapter 6 it is shown that for a complete QR factorization the
Householder and fast Givens algorithms each require about m?(n — m/3) flops, while MGS requires
about m2n. Often n > m and there will be little difference in cost, but we would generally choose
the QR factorization for its excellent numerical properties.

We now give the result which relates the work in §§2 and 3 with that in §§4 and 5 so far, see
[5], and motivated the lengthy title for this paper.

Theorem 5.1. If
ATA=% = (o)), (5.4)

thenfors=1,...,mand j,k=14,...,m
ps,‘):cosegg)(A),

when either of these is defined. Here the p( /) are defined by (3.5), where the a(i) are elements of the
Schur complement T) of the leading principal (s —1) x (¥ — 1) submatrix ofE and arise naturally
in the Cholesky factorization (2.4) of Z. The 9J P (A) are as in Definition 5.1 above.

When T is a scalar multiple of the (population or sample) covariance matrix of some distribu-

tion, these p( ) are the corresponding partial correlation coefficients, see Definition 3.1. As a result
partial correlatlon coefficients can also be defined in terms of angles between projected vectors.
These projected vectors arise naturally from the QR factorization of A.

Proof. The p() in (3.5) are a function of the elements a}? of £} = ULU,; obtained from the
Cholesky factonzation (2.4),

T — TUn UuUu T e .
L=U U—( yvn ULUss + ULUs UjUnis(1—-1x¢-1), (5.5)

where these products are unaffected if all the zero rows are removed from U, so we can henceforth
assume Uy, bas full row rank

In (5.3) we showed that © k (A) is the angle between columns g; and g, of G, where from (5.4)

and (5.1)
S=aTa=(EE E'F (5.6)
- “\FTE FTF+GTG)’ '
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where E(g x ¢ — 1) is of rank g, so that F = EC, C = ET(EET)"'F.
We now equate (5.5) and (5.6) to show GTG = UL U,;. The (1,1) and (1,2) blocks give

Un = (UnUL) 'ULETE
Urg = (UnUf) 'UnETF = U C

so that
UZUwy = CTULUNLC = CTETEC = FTF,

and the desired result follows from equating the (2,2) blocks. This shows g}'g‘, = "5“2' and combining
(5.3), the definition of angle (4.1), and (3.5), proves the theorem.
|

This result is essentially based on the uniqueness relation between the Cholesky factor of AT A
and the upper triangular matrix in the QR factorization of A. For full column rank A the proof
would be briefer, but we have given the result in its full generality.

To summarize one practical advantage of this theorem, if we are given A where we know
¥ = AT A is the sample or population covariance matrix of a distribution, then we can compute the
corresponding partial correlation coefficients pg"z directly from A, first by carrying out a QR-like
factorization of the form (5.1), then finding cos ©(g;, g,) using either (4.1) or (4.3) with (4.5).

6. Observations of Random Variables

Suppose we have m random variables 1, ..., {m,and for y=1,...,m,z; = (&1; ... &q, )T
is a vector of n observations of §;. Then for j=1,...,m

1
a,-=z,-—-;e(z;re), e=(1 ... 1T, (6.1)

is z; adjusted for its mean, and

1
L= (n_l)ATA, A=(a; ... apm),
is the usual estimate for the covariance matrix of the distribution of these random variables, and
is called the sample covariance matriz. From this we could compute the sample partial covariance
matrices and sample partial correlation coefficients exactly as in §3, and these would be estimates of
the corresponding population values. However it is numerically preferable to work with A directly,
and so these could also be computed as described in §§4 and 5.

A difficulty with this approach is that if we obtain (€n411 ... &En+1m ), 8 Nnew observation
for each variable, and wish to update our values, then every mean has to be adjusted and every
element of A is changed, as well as having a new row added. To avoid this, note that (6.1) can be
written

1
a; = Pz;, P=1- —ee,
n

where P is symmetric and idempotent, and is the orthogonal projector onto the space orthogonal
to e. But from (5.1) and (5.2), one step of the QR factorization

-~
- .
-y

a b7

(e X)=(q1 Qz)(o B>’ X=(z1 ... Zm),

el ol

gives a matrix Q2 B whose columns are the projections of the columns of X onto the space orthogonal
to e, and so are the required a;. Now since A = PX = Q:QTX = Q:B, and all the values we

10

AOROSOUCGIOIIGIOGIOAODGA0 (NG '
B RS SRR .

00
L

T



AR
(ol

L{l.‘l‘s— N~

-~

. e _s,é._}\‘
YO
@S

"
»
o

§
5 'v"u .,
Pl

~
Tt
EA AR
P

AN s

er
o

',

NRRAN

o

want can be found from AT A = BT B, we can work with B instead of A, and continuing the QR
factorization of (e X) will produce everything needed in §5.

This is not just a nice way of effectively adjusting the z; for their means. If we already have
the QR factorization of (e X ), we can add the new row (1 £n411 ... Entim)to(e X)and
update the factorization using standard efficient and numerically reliable techniques, see for example
(8] §12.6. We can also update the factorization efficiently when we discard a row of (¢ X ), while
adding or deleting columns (corresponding to random variables) is particularly easy. We could also
update the Cholesky factor of given £ when a row and corresponding column ir added or deleted,
see also (7, 10]. It is a straightforward exercise to compute the new partial correlation coefficients
following such computations, however there is a danger of numerical errors in the case of discarding
a row.

7. Some Computational Considerations
()

So far we have considered computmg Pji» the partial correlation coefficient of £; and ¢,
keeping &1, ..., - fixed where 7,k = 1,...,m; and we have seen how to compute these for the
fixed ordering ¢ = 1,...,m. Of course any mmal ordering of the columns of X in §6 or A in §5 or
any symmetric ordering of columns and rows of £ could be chosen, and during the factorizations
pivoting can always be used on the unfactored part to determine which coefficients will be produced
next.

Let us write p'-sj where S is some set of indices, to denote the partial correlation coefficient of
& and £, keeping &, fixed for all k € S When several lots of such coefficients are required it is

usually the case that we want pz“, k= ,-+.,t, where §S; C S3 C --- C &;. In this case we can

order columns of A for example to give
(Al Ag Ag AH.I):J;

where (A; ... A;) has just those columns with indices in Si, k = 1,...,t and A¢4; contains
the remaining columns. Applying the QR factorization to A will allow us t.o compute everything
in the correct order.

If we already have upper triangular U in A = QU (or £ = UTU), and we wish to compute
values for a different ordering, we can always reorder columns (and rows) and update U to produce
the required form. For example suppose U = (u; ... ug)isthe nonsingular upper triangular 5x5
matrix obtained from the QR factorization of A, and we now want to compute Pf,s with § = {2,4}.
We could arrange the columns and transform (uz u4 u; ug) by eliminating elements (2,1),
(4,2) and (3,2):

* % % % ¥ % * %
* % * * *
_ (E F
* - * = \0 G
* *
*

and pl s is the cosine of the angle between the two columns of G. This could be found using (4.1),
or by applying rotations as in (4.3) and (4.4), see (4.5).

We would tend to use the above approach to maintain as much numerical information as
possible when we initially know A or X, but when we are given I, it could be worth considering
more efficient ways of updating U, see [7]. Note that after § — 1 steps of the Cholesky algorithm

(2.4) all the a’(. ) are at hand, and so all the p( ) in (3.5) can be computed in m ~ s square roots and
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e (m—1)(m—1+1)/2 multiplications and divisions. On the other hand if we use the QR factorization,
o or already have

e _(E F

[ U= ( 0 G) ’
W we still need to find the cosines of the angles between the columns of G. UG isn—i+1xm-1+1
Avel and full this would take (n — ¢+ 1)(m — ¢ + 1)(m — ¢)/2 flops to compute all the g7 g, in (4.1). The
K cost would be significantly less if n >> m and G was already upper triangular, ‘mt it would still
oy be on the order of (m — ¢)3, and so this QR approach is inherently more costly than the Cholesky

approach if many partial correlation coefficients are required. However there are situations where
the loss of accuracy in forming AT A can be significant, as we now show, see also [5).

U

R
““.;: Example. Suppose we are given

\!

‘-2 -1 1 0
e JUREE U I UES  7

V2L e e 14+e )’

o —€ —€ -l+c¢
™ ‘.l
“'-I ' .
o where € is non-zero, and that the partial correlation
I’w‘
'A ' 2

‘ o) - oty
v, 2 (2

¥, "gz) ‘733)

Pl i)

-‘.

is to be determined. The corresponding covariance matrix AT A is

-
b3

N 1+ -1+ 0

" T=|-14+¢ 1+¢ 2¢ ,

::5: | 0 2 1+3¢

i

[ and in exact arithmetic, one has
}..I.

J 2 2) _ 2_ (=1+¢€%)? (2) — 2
** U;s)=2€, ng)——1+€ -_ITCZ_, 033)—1+3€
o

::; so that
Y (@) _ . 1+ ¢

.M st - 81gn(c) 1 + 3(2 *

) However, in finite precision floating point arithmetic and with ¢ chosen to be sufficiently small
:‘, (2¢ < 8'/2, where 6 is the floating point precision so that the computed fi(1 % 4€?) = 1), the
:1" : computed quantities turn out to be

L%

s 1 -1 0

o )= -1 1 2
;. 0 2¢ 1
o

-
AR
o and
": ag) = 2¢, aﬁ’ =0, ag) =1
.(. so that p(zg) is not a finite number.
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E\_ Performing a QR decomposition of the matrix A yields a 4 x 3 matrix Q with orthonormal
o columns and a 3 x 3 upper triangular factor

N‘

' ) 1+ -1+ 0
- U= 0 2]e| sign(e)(1 + €

\ N 2

Yy 1+e€ 0 0 lelvV2(1 + €)
E: in exact arithmetic. In finite precison arithmetic with the same choice of ¢ as before, one has
k 1 -1 o

I fi(U)=| 0 2|¢| sign(e) |,
;:: 0 0 \/ilcl
P“:
:';" and the sine of the rotation that transforms the submatrix

)

& 2le| sign(e)

0 V2
Y
e
> to lower triangular form is equal to fi p = sign(¢), the exact value to machine precision.
. P

n'v:
Wt

8. Conclusions

k= In this paper we have shown several relationships between theoretical objects and algorithms,
‘o and used these to suggest approaches to numerical computations. Several different topics have been

'f-j considered, and it is important to see how they all fit together.

j It is a standard result that the Cholesky factors of the Schur complements () of all leading

" principal submatrices of symmetric positive definite T are produced by the Cholesky factorization
of L. It is probably less well known (at least we know of no reference) that not only the Cholesky

-~ factors, but also the Schur complements themselves are produced directly (that, without having

:: to form the products of their factors) with the correct organization of the Cholesky algorithms,

o see (2.4). We have extended this result to show it also holds for singular £ when we consider the

b - generalzzcd Schur complements £0). This is summarized in Result 2.1.

iy When ¥ = (0;) above is the nonsingular covariance matrix of a vector of random variables
z ~ (a,Z), then p;; = a.~,~/ (0ii0;5)}/? are the correlation coefficients. The Schur complement

X £0) = (a(')) 5,k =1,...,m of the leading (f — 1) x (i — 1) submatrix of T is called the partial

o covariance of elements ¢ t.c =~ of z given the first 1 — 1 elements. The corresponding partial

:, correlation coefficients are theu pj; 6y = a(') v/ (a(') ('))1/ 2, Since the a(k) are given directly by the

g Cholesky algorithm (2.4), the p( ,2 can be computed from them. We have shown that even when

o T is singular, the generalized Schur complement £(*) given by the Cholesky algorithm (2.4) is still

:’ the required partial covariance matrix, and so the partial correlation coefficients can be computed

I as indicatéd above whenever a( )a,(,,,) is nonzero. If z has a multivariate normal distribution these

:,:. partial covariances and correlstlons are also conditional covariances and correlations.

: If A is available where £ = AT A, then the upper triangular Cholesky factor U of T is given by

e the QR factorization of A. It was shown in (5] how partial correlation coefficients could be computed

o from U without forming UTU. In §5 we rephrased those results to emphasize that partial correlation

:;: coefficients are the cosines of angles between vectors appearing in the QR factorization of A. As

~ a result, partial correlation coefficients for different sets of given elements of the random vector z

. can be obtained by permuting the columns of A and updating the QR factorization, see [5]. Again
this did not require £ to be nonsingular.
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The two main sequences of relationships have therefore been, for a (possibly singular) covari-
f _':$ ance matrix £ = AT A:

1. Cholesky factorization of T, as implemented in (2.4)

"\' e (generalized) Schur complements of leading submatrices of

\ . o partial covariance matrices

:‘_‘8 e partial correlation coefficients.

N 2. QR (or MGS) factorization of A

' ' e projections of later columns of A onto spaces orthogonal to earlier columns
,,.; o cosines of angles between these projections

:.J} e partial correlation coefficients.

150

Of course both the Cholesky factorization of £ and the QR factorization of A produce Cholesky
factors of each leading principal submatrix of L and of the corresponding (generalized) Schur

:_' -; complement, but these are well known and not part of the above sequences.

o When the population covariance matrix for the random vector z is not available, and A is
X \'3 obtained from n observations of each of the random variables as shown in §6, then £ = (n—1)"147 4
‘ is the sample covariance matrix. The sample partial covariance matrices are the generalized Schur
‘ complements of the principal submatrices of £, and the sample partial correlation coefficients can

be found from the Cholesky factorization of ¥ or the QR factorization of A, just as was described
" for the population partial correlation coefficients. In this case however, we may obtain further
il observations on each random variable, and §6 indicated how the computations may be arranged

v to include these, and update the factorization and corresponding partial correlation coefficients.
Ways of computing different sets of partial correlation efficiently were considered in §7.

- Reliable numerical computation has been a guide in our search for connections and algorithms
D here, and in §4 we made some general observations on computing angles between vectors, and the
_;: possible effect of finite precision. More importantly it was pointed out in [5] and repeated in §7

‘ here, how working with the QR factorization of A rather than the Cholesky factorization of AT A

:g can be numerically crucial in some cases of computing partial correlation coefficients, even though
h) the AT A approach may be faster.

W In a forthcoming paper will be presented a derivation of this QR approach from the parallel

h y implementation of an algorithm for solving symmetric positive definite linear systems by hyperbolic

yn rotations, as shown in [4).
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